学术交流

    学术交流

    当前位置: 首页 -> 学术交流 -> 正文

    走向现代数学-系列学术报告(NO.176)

    编辑: 发布时间:2015-06-12 点击:

    时间 地点
    主讲人

    报告人: 卢琳璋教授(厦门大学数学科学学院二级教授)

     

    报告标题: A structure-exploiting algorithm for solving a palindromic quadratic eigenvalue problem

     

    时间: 2015-6-15(星期一)下午4:30

     

    报告地点:数学系实验室

     

      

    摘要:

    In this talk, we discuss how to solve numerically  the palindromic quadratic eigenvalue problem (PQEP) 2 AT+ λ Q + A)z=0 arising from the vibration analysis of high speed trains,  where A, Q m-by-m are matrices with special structures: both Q and A are m-by-m block matrices with each block being q-by-q, and moreover they are complex symmetric, block tridiagonal, and block Toeplitz. Recently, Guo and Lin (SIAM J. Matrix Anal. Appl., 31 (2010), 2784--2801) proposed an efficient solvent approach to solve this PQEP by computing the so-called stabilizing solution to the n-by-n matrix equation X+ATX-1A=Q via the doubling algorithm. It is shown here that the stabilizing solution X differs from Q only in its (m,m)th block position, and thus it suffices to only compute that block. The latter is shown to satisfy another matrix equation having the same form as X+ATX-1A=Q but of q-by-q. We then apply the doubling algorithm to the q-by-q matrix equation to the block and the whole stabilizing solution.
        Numerical examples are presented to show the effectiveness of the new method.

     

    汕头大学理学院

    2015年6月12日

    地址:广东省汕头市大学路243号汕头大学
    邮箱:o_kyc@stu.edu.cn
    版权所有 汕头大学科研处